Monday, October 10, 2016

Recommendations for practice



Equity is “raising the achievement of all students while narrowing the gap between the highest and lowest performing students and eliminating the racial predictability and disproportionality of which student groups occupy the highest and lowest achievement categories.” Anti-racism is “our conscious and deliberate individual and collective action that challenges the impact and perpetuation of institutional White racial power, position and privilege” (Singleton & Linton, 2006, p. 242). There is extreme value in understanding motivation and engagement in traditionally underserved students. The urgency with which systemic changes need to be made is always present. There will always be constraints or limitations to any inquiry into the racial opportunity gap. It is vitally important that we, as educators, mentors, and role models ask this one question: Do we have the will to educate all children?

Dr. Asa G. Hilliard (1995) believes:

the knowledge and skills to educate all children already exist. Because we have lived in a historically oppressive society, educational issues tend to be framed as technical issues, which deny their political origin and meaning. There are no pedagogical barriers to teaching and learning when willing people are prepared and made available to children.
If we embrace a will to excellence, we can deeply restructure education in ways that will engage teachers to release the full potential of all our children. (p. 200).

I believe that the inability to provide equal access and opportunity of STEM-foundational thinking and instructional activities for marginalized students begins with an unwillingness to acknowledge how the presence of privilege and power continue to underserve students of color, further widening the gap between access and inequity. Instead of focusing on motivating these students, initially, I believe that concentrated efforts on getting teaching staff and other educational leaders to (a) acknowledge their complicity in the oppression of their minority students, thereby resulting in an achievement gap, and (b) using this racial consciousness to create structures that will recruit, encourage, and foster students of color in STEM curricula and future careers.

Although not presented in the literature review, Dr. Erica Walker, an associate professor of mathematics education at Teachers College, Columbia University, has focused her research on social and cultural factors that facilitate mathematics engagement, learning, and performance for traditionally underserved students. I believe that her framework for engaging marginalized students at the high school level in mathematics can be applied directly to promoting STEM-foundational thinking at the elementary school level. In fact, promoting STEM-foundational thinking is not “dependent on a particular curriculum” or amount of resources (Walker, 2012, p. 86). She outlines four components that need to be integrated systems-wide in order to increase participation in mathematics’ courses. I will discuss how I believe that each component can also be applied to STEM.



          Attention to rigor. Students need to feel that their academic pursuits and hard work mean something and are worth their time and effort. Rigorous and challenging instructional activities (e.g.: STEM-foundational thinking instructional activities) promote deep learning because “learning is optimized when students are involved in activities that require complex thinking and the application of knowledge” (Hess, Carlock, Jones, & Walkup, 2009). Hess’ (2009) Cognitive Rigor matrix explains to teachers how Bloom’s Taxonomy and Webb’s (2005) Depth of Knowledge levels are both similar and dissimilar. For example, it is a tool used for examining the depth of understanding for different tasks that initially seem to be at comparable levels of complexity (see Table 4).

Table 4. Hess’ Cognitive Rigor Matrix with Curricular Examples: Applying Webb’s Depth-of-Knowledge Levels to Bloom’s Cognitive Process Dimensions



By cross-examining Webb’s (2005) Depth of Knowledge with Bloom’s Revised Taxonomy of Cognitive Process Dimensions, it allows teachers to become “more skilled at recognizing the elements and dimensions of cognitive rigor and analyzing its implications for instruction and assessment, provid[ing] learning opportunities that benefit all students” (Hess, Carlock, Jones, & Walkup, 2009, p. 8).  I believe that with appropriate, scaffolded support, teachers will be able to increase the amount of STEM-foundational thinking occurring in their classrooms (STEM-specific or otherwise) and deepening the learning of students.

          Attention to and validation of students’ everyday experiences and interests. Despite some beliefs, all students crave academic experiences that mirror their everyday experiences.  Students have a desire to feel efficacious with regards to their cultural and academic identities.  Therefore, it is up to teachers and other school leaders to connect STEM to students’ lives both inside and outside of the classroom.  Understanding how the sciences, technological advances, engineering, and mathematics are useful in everyday lives fosters a STEM-foundational identity that can and should be tied closely tied to cultural identity.  For example, cultural identity is one of six guiding themes of Culturally Responsive Education (CRE), a pedagogical framework originally discussed by Gloria Ladson-Billings, in her book The Dreamkeepers (2009).  CRE is a framework that recognizes the importance of including students’ cultural references in all aspects of learning, and according to Dr. Adeyemi Stembridge from New York University, is the “epistemological offspring of Multicultural Education and Critical Race Theory; a mental model that is useful for identifying themes and tools of practices for closing opportunity gaps without marginalizing some students relative to others” (Stembridge, 2015).  Engaging students in STEM-foundational thinking and instructional activities contributes to their development of content knowledge, as well as how their culture, race, ethnicity, gender, and academic abilities shape the perceptions of their STEM educational opportunities.  As teachers pay attention to and validate students’’ everyday experiences and interests, they are closing STEM equity gaps.   
         
          Focus on community. Learning is a social act.  Student collaboration and discussion are
essential elements of an engaging classroom and promote deeper understanding.  Elements of CRE and STEM-foundational thinking “encourage peer discourse as a critical part of teaching and learning” (Walker, 2012, p. 86).  By focusing on student learning communities, teachers promote STEM-foundational thinking while using CRE “engage students by drawing on their academic [STEM] knowledge as well as their social and cultural identities (Stembridge, 2015).   Students, in turn, will take responsibility for their learning and “feel responsible for each other’s learning” (Walker, 2012, p. 86).  A classroom that promotes and facilitates STEM-foundational thinking and instructional activities is one promotes positive classroom behavior and a shared determination to achieve.
         
          Out-of-school/in-school mathematics experience connections (content and socialization). Traditionally underperforming students of color are best supported with instruction connects academic content with out-of-school experiences.  Whereas Walker (2012) focuses primarily on mathematics instruction, I believe that the same applies to STEM-foundational thinking.  When teachers use STEM-foundational thinking and deliberately design a learning experience that leverages students’ assesses, they are “bridg[ing] their academic and social identities” (Stembridge, 2015).  For example, there are numerous programs that seek to incorporate elements of this framework.  The Young People’s Project is affiliated with the Algebra Project, training young students to become “math literate” workers.  Paul Zeitz from the University of California Berkeley has created the Berkeley Math Circle, which exposes students to “engaging experiences in mathematics outside of mathematics classrooms” as well as “high-quality engaging mathematics within their local school contexts” (Walker, 2012, p. 87).  This model can be applied to STEM-foundational thinking and instructional activities.

Building Mathematics Learning Communities as framework for STEM Learning Communities

There are implications for teachers, and the connection of creating classrooms that promote and foster STEM-foundational thinking.  Using the six themes of Culturally Responsive Education: (a) engagement; (b) relationships; (c) cultural identity; (d) vulnerability; (e) asset-focused factors; and (f) rigor, teachers will become attuned to instructional behaviors that are conducive to STEM-foundational thinking.  Teachers need to be aware that these behaviors “signal their interest in students’ [STEM] learning, and that students interpret these behaviors as indicators of teachers’ perceptions and expectations (or lack thereof) for student success [in STEM]” (Walker, 2012, p. 113).  I propose using Walker’s (2012) framework for building mathematics learning communities as a model for creating elementary-school STEM learning communities.  These STEM communities should focus on a few key concepts that Walker (2012) outline in her own conclusions.  First, STEM communities should not be viewed as a remedial program for underperforming students (Steele, 1997; Tresiman, 1992).  Second, STEM learning communities need to incorporate an academically supportive peer group that will foster learning and engagement.  Third, these communities need to be sustainable.  For example, school and district administrators need to make a commitment to creating and supporting STEM learning spaces within their elementary school buildings.  In order to foster teachers with skills in culturally responsive pedagogy (CRE), and the capacity to use this critical pedagogy in order to improve student achievement, I believe that frequent and continuous professional development throughout the school year is necessary.  District instructional coaches should be adequate trained in Culturally Relevant Education, Problem-based learning (Papageorgiou et al., 2015), and STEM-foundational thinking pedagogical practices (Basham, et al., 2010; Bybee, 2013; Drew, 2011; Myers & Berkowicz, 2015; Berkowicz & Myers, 2016).  School principals are responsible for their staff becoming culturally relevant in STEM-foundational thinking.  Closing STEM inequity gaps is the intended goal, and in order to be successful and to sustain this success teachers and administrators need to commit to having a racial consciousness in STEM classrooms so that STEM-foundational thinking and instructional activities are not solely reserved for certain groups of students.